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1. Introduction9

Jupiter and Saturn are gas giants in our solar system, both featuring prominent polar vortices.10
At Jupiter’s poles, cyclones form striking geometric arrangements: an octagon in the north11
and a pentagon in the south (Adriani et al. 2018, 2020; Tabataba-Vakili et al. 2020), often12
referred to as ‘vortex crystals’(Fine et al. 1995; Siegelman et al. 2022). Each cyclone within13
these formations spans thousands of kilometers, and the associated shear wind speeds can14
reach about 100𝑚𝑠−1(Grassi et al. 2018). These cyclones rotate with periods of approximately15
1–3 days(Adriani et al. 2018), which corresponds to the inertial timescale. In comparison,16
Jupiter’s planetary rotation period is about 10 hours, making the rotational timescale several17
times shorter than the inertial timescale and highlighting the dominant role of rotational18
effects. At Saturn’s poles, a massive polar cyclone dominates each region, extending from19
the pole to about 75◦ latitude. The maximum wind speed within these vortices can reach20
about 100𝑚𝑠−1 (Godfrey 1988; Sánchez-Lavega et al. 1993) at the north pole and up to21
160𝑚𝑠−1 (Sánchez-Lavega et al. 2006) at the south pole. Similar to Jupiter’s polar vortices,22
Saturn’s polar vortices are also strongly influenced by rotational effects.23

2. The model24

In the polar regions of a rotating planet, the dynamics of an incompressible Boussinesq fluid25
can be described using the gamma-plane approximation. This framework accounts for the26
variation of the Coriolis parameter with radial distance from the pole. The dimensionless27
governing equations for mass, momentum, and energy conservation in an inviscid stably28
stratified flow are expressed as follows29

∇ · 𝒖 = 0 , (2.1)30

𝜕𝑡𝒖 = −𝒖 · ∇𝒖 − ∇𝑝 − Ro−1Γ−1
(
1 − 𝛾𝑟2

0

)
𝒛 × 𝒖 + Fr−2𝜃𝒛 , (2.2)31

𝜕𝑡𝜃 = −𝒖 · ∇𝜃 − 𝒖 · 𝒛 , (2.3)32
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where 𝒖 denotes the velocity field, 𝑝 is the modified pressure (pressure divided by the33
reference density), and 𝜃 represents the perturbation from the background temperature profile.34
𝑧 is a unit vector in the vertical direction. The parameter 𝛾 captures the spatial variation of35
the Coriolis parameter in the vicinity of the pole, while 𝑟0 is the radial distance from36
the pole. The characteristic vertical and horizontal length scales are denoted by 𝐻 and 𝑅,37
respectively, and their ratio defines the aspect ratio Γ = 𝑅/𝐻. To characterize the dynamical38
regime of the flow, we introduce two nondimensional parameters. The Rossby number,39
Ro = 𝑉/2Ω0𝑅, quantifies the relative importance of inertial forces compared to the Coriolis40
effect, where 𝑉 is a characteristic velocity and Ω0 is the planetary rotation rate. The Froude41
number, Fr = 𝑉/𝑁𝐻, quantifies the ratio of inertial to buoyancy forces in a stratified42

flow. The Brunt–Väsälä frequency 𝑁 is defined as 𝑁 =

√︃
−𝜌−1

0 𝑔𝑑𝜌0/𝑑𝑧, where 𝜌0 is the43

background density and 𝑔 is the gravitational acceleration, respectively. It should be noted that44
different characteristic length scales are used in defining the Rossby and Froude numbers.45
Specifically, the Rossby number is based on the horizontal length scale 𝑅, reflecting the46
influence of planetary rotation on horizontal motions. In contrast, the Froude number uses47
the vertical length scale 𝐻, capturing the balance between inertial and buoyancy forces in the48
stratified vertical structure of the flow. The Coriolis effect is incorporated using the 𝛾-plane49
approximation. Similar to the more widely used 𝛽-plane model, this approach expands the50
Coriolis parameter 𝑓 = 2Ω0 cos 𝜃 around the pole, where 𝜃 is the colatitude, and retains51
terms up to the second order. While the 𝛽-plane approximation assumes a linear variation of52
the Coriolis parameter with latitude, making it suitable for mid to low latitudes, the gamma-53
plane approximation is tailored for polar regions. In these areas, the Coriolis parameter54
varies quadratically with latitude, expressed as 𝑓 = 2Ω0(1− 𝛾𝑟2

0), providing a more accurate55
representation of rotational effects near the poles.56

We examine a barotropic vortex within a Boussinesq flow. In our model, the vortex’s57
maximum velocity𝑉 is taken as the characteristic velocity. The radius at which this maximum58
occurs defines the characteristic horizontal length scale 𝑅, while the vortex height represents59
the vertical length scale 𝐻. This choice leads to a nondimensional representation of the60
vortex, characterized by a circular shear flow 𝒖𝒔 = (0, 𝑟Ω(𝑟), 0) , where Ω(𝑟) describes the61
angular velocity as a function of radial distance 𝑟 from the vortex center. The angular velocity62
profile is given by:63

Ω(𝑟) = 1
Γ

exp
{

1
𝑏

[
1 −

( 𝑟
Γ

)𝑏]}
(2.4)64

where 𝑏 is a shape parameter that controls the sharpness of the velocity gradient. This65
formulation yields a smooth, axisymmetric flow with a peak velocity at 𝑟 = Γ, a structure66
commonly used to represent geophysical vortices. Initially, the vortex is positioned at the67
pole.68

In Boussinesq flow, Schubert & Hack (1982) identified two types of stability relevant69
to rotating vortices: static stability (𝑁2 > 0) and inertial stability (𝑟−3𝜕𝑟𝑚

2 > 0), where70
𝑚 = Ω𝑟2 + 𝑓 𝑟2/2 represents the total angular momentum. The Froude number quantifies71
static stability, while the Rossby number characterizes inertial stability. A smaller Fr indicates72
stronger resistance to vertical displacement, implying greater static stability. For cyclonic73
vortices, inertial stability in a barotropic setting requires that the radial derivative of angular74
momentum be positive, i.e., 𝜕𝑟𝑚 > 0. This condition leads to the following expression75

Φ(𝑟) = 1 + Ro
[
2 −

( 𝑟
Γ

)𝑏]
Ω(𝑟) > 0 , (2.5)76

where Φ(𝑟) serves as a diagnostic function for inertial stability. This formulation provides77
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a quantitative criterion for assessing inertial stability, ensuring that angular momentum78
increases with radius, a necessary condition for maintaining stability in cyclonic flows. The79
minimum value of Φ(𝑟) occurs at 𝑟min = (2+ 𝑏)1/𝑏, with the corresponding minimum given80
by Φmin = 1 − 𝑏 exp(−1 − 𝑏−1)Ro. For Φmin to remain positive, indicating inertial stability,81
the Rossby number must satisfy Ro < Roc = 𝑏−1 exp(1 + 𝑏−1). If Ro exceeds this critical82
threshold Roc, the vortex becomes susceptible to inertial instability.83

To evaluate the stability of this configuration, we perform both numerical simulations and84
linear stability analyses. These approaches allow us to track the evolution of perturbations over85
time and under varying flow conditions, providing insight into the dynamics and resilience86
of the vortex structure.87

3. The result88

3.1. Numerical simulation89

For the numerical simulations, we model vortex motion within a 𝛾-plane domain of size90
40 × 40 × 1 using a grid resolution of 256 × 256 × 21. In the vertical direction, the dynamic91
boundaries are treated as impenetrable and stress-free, while the thermal boundaries maintain92
a fixed temperature. Horizontally, we apply periodic boundary conditions to ensure continuity93
across the domain. To prevent artificial meridional flow across the domain boundaries, a94
sponge layer is implemented outside the inscribed circle of the computational box. This95
layer gradually dampens the velocity field, ensuring that the flow decays rapidly beyond the96
circle and mimics the effect of a solid boundary in the meridional direction. To solve the97
hydrodynamic equations, we use a hybrid finite-difference and spectral methods as described98
in Cai (2021). To reduce the number of prognostic variables, the velocity field is decomposed99
into toroidal and poloidal components. The horizontal dimensions are treated using Fourier100
transforms, enabling efficient computation in spectral space. For the vertical direction, a101
second-order semi-implicit finite-difference scheme is applied to accurately capture vertical102
variations while ensuring numerical stability.103

To begin our analysis, we fix the parameter 𝛾 = 0 and set the aspect ratio Γ = 1. We104
then explore the parameter space defined by the Froude number (Fr) ranging from 10−4105
to 103 and the Rossby number (Ro) from 10−3 to 103, as illustrated in Fig. 1. Each block106
in the figure represents the outcome of a single simulation. This parameter space can be107
categorized into three primary regimes based on the observed dynamical behavior. Regime I108
(green) corresponds to cases where either the Rossby number (Ro) or the Froude number (Fr)109
is small, but not necessarily comparable. This regime is characterized by stable dynamics,110
and simulations typically run without encountering numerical instability. Regime II (red)111
is characterized by high values of both Ro and Fr. This region is highly unstable, with112
simulations frequently failing within the first few time steps. Regime III (light and dark blue)113
occupies the intermediate range, where Ro and Fr are both low and of similar magnitude.114
This regime is of particular interest, as it consistently displays the vertical vortex splitting115
behavior. Since the instability in this regime is driven by the combined effects of stratification116
and rotation, we refer to it as gravito-inertial instability. In addition to these three main regions,117
a transitional zone (yellow) separates the stable and unstable regimes. This area shows mixed118
behavior, indicating a gradual shift in system dynamics.119

Figure 2 illustrates the evolution of a case in Regime III. In this regime, although both120
static and inertial stability conditions are satisfied, instability can still develop. The vortex121
initially tilts and subsequently breaks in the middle. As time progresses, the structure evolves122
into two distinct vortices, with one residing in the upper layer and the other in the lower layer.123
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Figure 1: Regimes on flow patterns of vortices across Rossby and Froude number with
fixed parameters 𝛾 = 0 and Γ = 1.

Figure 2: Illustration of vortex splitting for a case in Regime III. Each panel presents a
snapshot of the three-dimensional vorticity structure at a given moment as the vortex

evolves.

The number of vortex fragments is typically two when Fr ≈ 0.1Ro (the light blue in Fig. 1),124
but can exceed two when Fr is smaller than 0.1Ro (the dark blue in Fig. 1).125

To assess the effect of 𝛾 on vortex stability, we performed simulations at Ro = 1 and126
Fr = 10−3 using four values of 𝛾 ∈ {0, 1, 2, 4} × 10−4. In the reference case 𝛾 = 0, the vortex127
split into multiple vortices at 𝑡 = 2600. For 𝛾 ∈ 1, 2 × 10−4, splitting still occurred but was128
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Figure 3

delayed to 𝑡 = 2910 and 𝑡 = 3940, respectively. At 𝛾 = 4 × 10−4, the vortex remained stable129
for an extended period. These results suggest that increasing 𝛾 generally promotes stability.130
To explore whether this trend persists at larger 𝛾, we performed eight additional simulations131
at Ro = 0.1 and Fr = 0.01 with 𝛾 ranging from 5 × 10−5 to 0.03. As 𝛾 increased from132
5 × 10−5 to 3 × 10−4, vortex splitting was progressively delayed. As the 𝛾 further increases133
from 0.001 to 0.01, the vortex remained stable. However, at 𝛾 = 0.03, the vortex became134
unstable. This instability arises because a strong 𝛾 effect generates a pair of 𝛽-gyres within135
the vortex. When these gyres induce excessive shear, they trigger barotropic instability. In136
summary, 𝛾 has a dual role in vortex stability: weak to moderate values tend to stabilize the137
vortex, while excessively large values can destabilize it.138

We further examine the baroclinic instability of the vortex, considering two configurations:139
an inclined vortex and a conical vortex. Figure 3(a) shows a simulation with an inclined vortex140
at Ro = 0.1 and Fr = 0.01. The vortex splits into several smaller vortices, similar to the141
straight vortex case. Figure 3(b) presents the simulation of a conical vortex Fr = 0.01 by142
setting the vortex radius linearly increases from the bottom to the top. By this setting, the143
Rossby number is a function of height, linearly increasing from 1 at the bottom to 0.1 at the144
top. From Figure 1, we note that at Fr = 0.01, the vortex is stable when Ro = 0.01 but unstable145
when Ro = 0.1. Consistent with this, Figure 3(b) shows that the bottom layer of the vortex is146
unstable while the top layer remains stable. Simulations of these two configurations suggest147
that the observed instability is primarily driven by barotropic effect rather than baroclinic148
effect.149

3.2. Linear stability analysis150

To investigate the stability of vortex analytically, we perform a linear stability analysis of the151
system in the cylindrical coordinates (𝑟, 𝜙, 𝑧) originated at the vortex center. We introduce152
small perturbations to the initial state, and expanding the resulting equations to first order in153
the perturbation as154

∇ · 𝒖′ = 0 , (3.1)155

𝜕𝑡𝒖
′ = −𝒖′

· ∇𝒖𝑠 − 𝒖𝑠 · ∇𝒖
′ − ∇ 𝒑′ − Ro−1Γ−1

(
1 − 𝛾𝑟2

0

)
𝒛 × 𝒖′ + Fr−2𝜃′𝒛 , (3.2)156

𝜕𝑡𝜃
′ = −𝒖𝑠 · ∇𝜃

′ − 𝒖′
· 𝒛 , (3.3)157

where 𝒖′ = (𝑢′𝑟 , 𝑢′𝜙, 𝑢′𝑧) is the perturbation of velocity from 𝒖𝑠 in the cylindrical coordinates.158

All perturbation variables are functions of (𝑟, 𝜙, 𝑧, 𝑡). We express each variable in normal159
mode form as 𝐴′ (𝑟, 𝜙, 𝑧, 𝑡) → 𝐴̃(𝑟, 𝑧)𝑒𝑖 (𝑚𝜙+𝜎𝑡 ) , where 𝐴̃(𝑟, 𝑧) is the amplitude, 𝑚 is the160
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Figure 4: Results from linear stability analysis. Each grid corresponds to the result of a
generalized eigenvalue problem with Ro and Fr as indicated in the graph and

𝑘 = 1, 𝑚 = 1. The color bar is −Im(𝜎), which means the lower value in the colorbar, the
more unstable the corresponding eigenmode is.

azimuthal wavenumber, and𝜎 is the complex frequency. Considering the stress-free boundary161
condition at the top and bottom boundaries, we can further expand the perturbation variables162
in the vertical direction as163

[𝑢𝑟 (𝑟, 𝑧), 𝑢𝜙 (𝑟, 𝑧), 𝑝(𝑟, 𝑧)] =
𝑁∑︁
𝑘=1

[𝑢𝑟 ,𝑘 (𝑟), 𝑢𝜙,𝑘 (𝑟), 𝑝(𝑟)] cos(𝑘𝜋𝑧) , (3.4)164

[𝑢𝑧 (𝑟, 𝑧), 𝜃 (𝑟, 𝑧)] =
𝑁∑︁
𝑘=1

[𝑢𝑧,𝑘 (𝑟), 𝜃𝑘 (𝑟)] sin(𝑘𝜋𝑧) . (3.5)165

Substituting the above expansions into the linearized governing equations, and utilizing the166
orthogonality of the base functions, we obtain a set of generalized eigenvalue problem on167
𝜎. The eigenvalue 𝜎 determines the growth rate of its corresponding eigenmode. If the168
imaginary part of 𝜎 is negative, then the corresponding eigenmode will grow exponentially169
with time, leading to instability.170

Because the vortex center is singular, the eigenmode can sometimes appear stable at small171
wavenumbers but unstable at very large wavenumbers. This apparent instability at high172
wavenumbers is often a numerical artifact. Even if it is physical, perturbations at large 𝑘173
typically decay due to viscous effects. To avoid these complications, we fix the eigenmode174
at 𝑘 = 1 and 𝑚 = 1 to focus on stability at the smallest wavenumber. The results of175
the linear stability analysis are shown in Fig. 4. They indicate that the stability pattern is176
qualitatively consistent with the simulation results. In particular, the vortex becomes unstable177
when 𝐹𝑟 ≈ 0.1𝑅𝑜 and both parameters are small. Based on both the numerical simulations178
and the linear stability analysis, we conclude that this instability represents a genuine physical179
phenomenon in vortex dynamics.180
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4. Discussion and Conclusion181

In this paper, we demonstrate that, in addition to static and inertial instabilities, a distinct182
gravito-inertial instability emerges when the effects of stratification and rotation are small183
and comparable. This finding may have important implications for constraining the depth184
of vortices in planetary atmospheres. For instance, both Jupiter and Saturn host large-scale185
vortices in their polar regions, with diameters spanning thousands of kilometers. Observations186
indicate that Jupiter’s polar vortices approximately follow a circular shear flow profile with187
𝑏 = 1.5 (Li et al. 2020). The maximum velocity is about 100 m/s achieved at a distance of188
1000 km from the center of vortex (Grassi et al. 2018). Two scenarios have been proposed189
for their formation: one suggests that these vortices originate in the shallow weather layer,190
while the other posits formation within the deep convective zone. If the vortices form in191
the shallow weather layer, the background atmosphere is convectively stable, which aligns192
with the idealized conditions considered here in our analysis. The rotation rate of Jupiter193
is about 10 hours, therefore the Rossby number is about 0.3. In Jupiter’s atmosphere, the194
Brunt–Väsälä frequency 𝑁 ranges from about 0.01 s−1 near the 1-bar level (cloud top) to195
0.005 s−1 at 10 bars (about 100 km below cloud top) (Simon et al. 2018; Dowling et al.196
1998, 2006). Below 100 km in depth, 𝑁 could probably remains less than 0.005 s−1. Given197
that Jupiter’s atmosphere extends at most only a few thousand kilometers (Kaspi et al. 2018;198
Kong et al. 2018; Guillot et al. 2018), the Froude number Fr cannot fall below 10−4. As199
seen in the Fig. 1, Fr should be on the order of 𝐹𝑟 ∼ 0.1 for a vortex to remain stable when200
𝑅𝑜 ∼ 0.1. Assuming 𝑁 = 0.005s−1, this implies a vertical scale height of approximately201
𝐻 ∼ 200km. For smaller 𝑁 , the predicted depth would be even greater, suggesting that202
Jupiter’s large-scale vortices could extend several hundred kilometers below the cloud tops.203
In Saturn’s atmosphere, the polar vortex reaches a peak velocity of about 160 m/s at a204
radius of roughly 1500 km, corresponding to a Rossby number near 0.3. The Brunt–Väsälä205
frequency in the cloud region is approximately 0.003 s−1 (Garcı́a-Melendo et al. 2007; Genio206
et al. 2009). Applying the same Froude number constraint as before suggests that the depth207
of these large-scale polar vortices is on the order of 300km at Fr ∼ 0.1. This indicates that208
Saturn’s polar vortices also likely could extend several hundred kilometers below the cloud209
tops.210
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