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1. Introduction

Jupiter and Saturn are gas giants in our solar system, both featuring prominent polar vortices.
At Jupiter’s poles, cyclones form striking geometric arrangements: an octagon in the north
and a pentagon in the south (Adriani et al. 2018, 2020; Tabataba-Vakili et al. 2020), often
referred to as ‘vortex crystals’(Fine et al. 1995; Siegelman et al. 2022). Each cyclone within
these formations spans thousands of kilometers, and the associated shear wind speeds can
reach about 100ms ™! (Grassi et al. 2018). These cyclones rotate with periods of approximately
1-3 days(Adriani et al. 2018), which corresponds to the inertial timescale. In comparison,
Jupiter’s planetary rotation period is about 10 hours, making the rotational timescale several
times shorter than the inertial timescale and highlighting the dominant role of rotational
effects. At Saturn’s poles, a massive polar cyclone dominates each region, extending from
the pole to about 75° latitude. The maximum wind speed within these vortices can reach
about 100ms~! (Godfrey 1988; Sanchez-Lavega et al. 1993) at the north pole and up to
160ms~"! (Sanchez-Lavega et al. 2006) at the south pole. Similar to Jupiter’s polar vortices,
Saturn’s polar vortices are also strongly influenced by rotational effects.

2. The model

In the polar regions of a rotating planet, the dynamics of an incompressible Boussinesq fluid
can be described using the gamma-plane approximation. This framework accounts for the
variation of the Coriolis parameter with radial distance from the pole. The dimensionless
governing equations for mass, momentum, and energy conservation in an inviscid stably
stratified flow are expressed as follows

Veu=0, @.1)
O = —u-Vu—Vp—Ro T (1 - yrg) Sxu+Fr6s, 2.2)
8,0 =-u-Vo—u-2, 2.3)
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where u denotes the velocity field, p is the modified pressure (pressure divided by the
reference density), and 6 represents the perturbation from the background temperature profile.
Z is a unit vector in the vertical direction. The parameter y captures the spatial variation of
the Coriolis parameter in the vicinity of the pole, while ry is the radial distance from
the pole. The characteristic vertical and horizontal length scales are denoted by H and R,
respectively, and their ratio defines the aspect ratio I' = R/H. To characterize the dynamical
regime of the flow, we introduce two nondimensional parameters. The Rossby number,
Ro = V/2QyR, quantifies the relative importance of inertial forces compared to the Coriolis
effect, where V is a characteristic velocity and €y is the planetary rotation rate. The Froude
number, Fr = V/NH, quantifies the ratio of inertial to buoyancy forces in a stratified

flow. The Brunt-Visilé frequency N is defined as N = (/-p; ledpo/dz, where py is the

background density and g is the gravitational acceleration, respectively. It should be noted that
different characteristic length scales are used in defining the Rossby and Froude numbers.
Specifically, the Rossby number is based on the horizontal length scale R, reflecting the
influence of planetary rotation on horizontal motions. In contrast, the Froude number uses
the vertical length scale H, capturing the balance between inertial and buoyancy forces in the
stratified vertical structure of the flow. The Coriolis effect is incorporated using the y-plane
approximation. Similar to the more widely used S-plane model, this approach expands the
Coriolis parameter f = 2Q(cos 6 around the pole, where 6 is the colatitude, and retains
terms up to the second order. While the S-plane approximation assumes a linear variation of
the Coriolis parameter with latitude, making it suitable for mid to low latitudes, the gamma-
plane approximation is tailored for polar regions. In these areas, the Coriolis parameter
varies quadratically with latitude, expressed as f = 2Qq(1 — yré), providing a more accurate
representation of rotational effects near the poles.

We examine a barotropic vortex within a Boussinesq flow. In our model, the vortex’s
maximum velocity V is taken as the characteristic velocity. The radius at which this maximum
occurs defines the characteristic horizontal length scale R, while the vortex height represents
the vertical length scale H. This choice leads to a nondimensional representation of the
vortex, characterized by a circular shear flow ug = (0, rQ(r),0) , where Q(r) describes the
angular velocity as a function of radial distance r from the vortex center. The angular velocity
profile is given by:

1 1 r\b
Q(r) = Fexp{b [1 (r) “ 2.4)
where b is a shape parameter that controls the sharpness of the velocity gradient. This
formulation yields a smooth, axisymmetric flow with a peak velocity at r = I', a structure
commonly used to represent geophysical vortices. Initially, the vortex is positioned at the
pole.

In Boussinesq flow, Schubert & Hack (1982) identified two types of stability relevant
to rotating vortices: static stability (N> > 0) and inertial stability (»=30,m? > 0), where
m = Qr? + fr?/2 represents the total angular momentum. The Froude number quantifies
static stability, while the Rossby number characterizes inertial stability. A smaller Fr indicates
stronger resistance to vertical displacement, implying greater static stability. For cyclonic
vortices, inertial stability in a barotropic setting requires that the radial derivative of angular
momentum be positive, i.e., d.m > 0. This condition leads to the following expression

d(r)=1+Ro

2- (%)b} Q(r) >0, (2.5)

where ®(r) serves as a diagnostic function for inertial stability. This formulation provides
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3

a quantitative criterion for assessing inertial stability, ensuring that angular momentum
increases with radius, a necessary condition for maintaining stability in cyclonic flows. The
minimum value of ®(r) occurs at ryin = (2+ b)'/?, with the corresponding minimum given
by ®nin = 1 —bexp(—1 - b*I)Ro. For ®,;, to remain positive, indicating inertial stability,
the Rossby number must satisfy Ro < Ro. = b~'exp(1 + b~1). If Ro exceeds this critical
threshold Ro,, the vortex becomes susceptible to inertial instability.

To evaluate the stability of this configuration, we perform both numerical simulations and
linear stability analyses. These approaches allow us to track the evolution of perturbations over
time and under varying flow conditions, providing insight into the dynamics and resilience
of the vortex structure.

3. The result
3.1. Numerical simulation

For the numerical simulations, we model vortex motion within a y-plane domain of size
40 x 40 x 1 using a grid resolution of 256 x 256 X 21. In the vertical direction, the dynamic
boundaries are treated as impenetrable and stress-free, while the thermal boundaries maintain
a fixed temperature. Horizontally, we apply periodic boundary conditions to ensure continuity
across the domain. To prevent artificial meridional flow across the domain boundaries, a
sponge layer is implemented outside the inscribed circle of the computational box. This
layer gradually dampens the velocity field, ensuring that the flow decays rapidly beyond the
circle and mimics the effect of a solid boundary in the meridional direction. To solve the
hydrodynamic equations, we use a hybrid finite-difference and spectral methods as described
in Cai (2021). To reduce the number of prognostic variables, the velocity field is decomposed
into toroidal and poloidal components. The horizontal dimensions are treated using Fourier
transforms, enabling efficient computation in spectral space. For the vertical direction, a
second-order semi-implicit finite-difference scheme is applied to accurately capture vertical
variations while ensuring numerical stability.

To begin our analysis, we fix the parameter y = 0 and set the aspect ratio I' = 1. We
then explore the parameter space defined by the Froude number (Fr) ranging from 10~*
to 10% and the Rossby number (Ro) from 1073 to 103, as illustrated in Fig. 1. Each block
in the figure represents the outcome of a single simulation. This parameter space can be
categorized into three primary regimes based on the observed dynamical behavior. Regime I
(green) corresponds to cases where either the Rossby number (Ro) or the Froude number (Fr)
is small, but not necessarily comparable. This regime is characterized by stable dynamics,
and simulations typically run without encountering numerical instability. Regime II (red)
is characterized by high values of both Ro and Fr. This region is highly unstable, with
simulations frequently failing within the first few time steps. Regime III (light and dark blue)
occupies the intermediate range, where Ro and Fr are both low and of similar magnitude.
This regime is of particular interest, as it consistently displays the vertical vortex splitting
behavior. Since the instability in this regime is driven by the combined effects of stratification
and rotation, we refer to it as gravito-inertial instability. In addition to these three main regions,
a transitional zone (yellow) separates the stable and unstable regimes. This area shows mixed
behavior, indicating a gradual shift in system dynamics.

Figure 2 illustrates the evolution of a case in Regime III. In this regime, although both
static and inertial stability conditions are satisfied, instability can still develop. The vortex
initially tilts and subsequently breaks in the middle. As time progresses, the structure evolves
into two distinct vortices, with one residing in the upper layer and the other in the lower layer.
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Figure 1: Regimes on flow patterns of vortices across Rossby and Froude number with
fixed parameters y = O and I = 1.
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Figure 2: Illustration of vortex splitting for a case in Regime III. Each panel presents a
snapshot of the three-dimensional vorticity structure at a given moment as the vortex
evolves.

The number of vortex fragments is typically two when Fr ~ 0.1Ro (the light blue in Fig. 1),
but can exceed two when Fr is smaller than 0.1Ro (the dark blue in Fig. 1).

To assess the effect of y on vortex stability, we performed simulations at Ro = 1 and
Fr = 1073 using four values of y € {0, 1,2,4} x 107*. In the reference case y = 0, the vortex
split into multiple vortices at = 2600. For y € 1,2 x 107%, splitting still occurred but was
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Figure 3

delayed to t = 2910 and ¢ = 3940, respectively. Aty = 4 X 107%, the vortex remained stable
for an extended period. These results suggest that increasing y generally promotes stability.
To explore whether this trend persists at larger y, we performed eight additional simulations
at Ro = 0.1 and Fr = 0.01 with y ranging from 5 x 107> to 0.03. As 7y increased from
5x 107 to 3 x 1074, vortex splitting was progressively delayed. As the y further increases
from 0.001 to 0.01, the vortex remained stable. However, at v = 0.03, the vortex became
unstable. This instability arises because a strong y effect generates a pair of S-gyres within
the vortex. When these gyres induce excessive shear, they trigger barotropic instability. In
summary, y has a dual role in vortex stability: weak to moderate values tend to stabilize the
vortex, while excessively large values can destabilize it.

We further examine the baroclinic instability of the vortex, considering two configurations:
an inclined vortex and a conical vortex. Figure 3(a) shows a simulation with an inclined vortex
at Ro = 0.1 and Fr = 0.01. The vortex splits into several smaller vortices, similar to the
straight vortex case. Figure 3(b) presents the simulation of a conical vortex Fr = 0.01 by
setting the vortex radius linearly increases from the bottom to the top. By this setting, the
Rossby number is a function of height, linearly increasing from 1 at the bottom to 0.1 at the
top. From Figure 1, we note that at Fr = 0.01, the vortex is stable when Ro = 0.01 but unstable
when Ro = 0.1. Consistent with this, Figure 3(b) shows that the bottom layer of the vortex is
unstable while the top layer remains stable. Simulations of these two configurations suggest
that the observed instability is primarily driven by barotropic effect rather than baroclinic
effect.

3.2. Linear stability analysis

To investigate the stability of vortex analytically, we perform a linear stability analysis of the
system in the cylindrical coordinates (r, ¢, z) originated at the vortex center. We introduce
small perturbations to the initial state, and expanding the resulting equations to first order in
the perturbation as

V-u' =0, 3.1

Su' = —u' -Vu, —uy-Vu' —Vp' —Ro™'T"! (1 - yr(z)) Exu +F22, (32)
00" =-uy-Vo' —u' -3, (3.3)

where u’ = (u)., u:p, u’,) is the perturbation of velocity from u; in the cylindrical coordinates.

All perturbation variables are fu~ncti0ns_of (r,¢,z,1). WeNexpress each variable in normal
mode form as A’(r, ¢, z,t) — A(r,z)e’(m¢+""), where A(r,z) is the amplitude, m is the



161
162
163

164

165

166
167
168
169
170
171
172
173
174
175
176
177
178
179
180

3
10 10-1

10?
1072

10!

. 1073
L &
~ g

107 10745
—2
10 10-5
1073
1076
104

107% 1072 107! 10° 10! 10% 10°
Ro

Figure 4: Results from linear stability analysis. Each grid corresponds to the result of a
generalized eigenvalue problem with Ro and Fr as indicated in the graph and
k = 1,m = 1. The color bar is —Im(0-), which means the lower value in the colorbar, the
more unstable the corresponding eigenmode is.

azimuthal wavenumber, and o is the complex frequency. Considering the stress-free boundary
condition at the top and bottom boundaries, we can further expand the perturbation variables
in the vertical direction as

N
[’ir(r’ Z),M~¢(T, Z)’ ]3(7’, Z)] = Z[ur,k(r),qu’k(r),p(r)] COS(kﬂZ) 5 (34)
k=
1 N
(1, (r,2),0(r,2)] = Z[uz,k(r), 0 (r)] sin(knz) . (3.5)
k=1

Substituting the above expansions into the linearized governing equations, and utilizing the
orthogonality of the base functions, we obtain a set of generalized eigenvalue problem on
o. The eigenvalue o determines the growth rate of its corresponding eigenmode. If the
imaginary part of o is negative, then the corresponding eigenmode will grow exponentially
with time, leading to instability.

Because the vortex center is singular, the eigenmode can sometimes appear stable at small
wavenumbers but unstable at very large wavenumbers. This apparent instability at high
wavenumbers is often a numerical artifact. Even if it is physical, perturbations at large k
typically decay due to viscous effects. To avoid these complications, we fix the eigenmode
at k = 1 and m = 1 to focus on stability at the smallest wavenumber. The results of
the linear stability analysis are shown in Fig. 4. They indicate that the stability pattern is
qualitatively consistent with the simulation results. In particular, the vortex becomes unstable
when Fr = 0.1Ro and both parameters are small. Based on both the numerical simulations
and the linear stability analysis, we conclude that this instability represents a genuine physical
phenomenon in vortex dynamics.
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4. Discussion and Conclusion

In this paper, we demonstrate that, in addition to static and inertial instabilities, a distinct
gravito-inertial instability emerges when the effects of stratification and rotation are small
and comparable. This finding may have important implications for constraining the depth
of vortices in planetary atmospheres. For instance, both Jupiter and Saturn host large-scale
vortices in their polar regions, with diameters spanning thousands of kilometers. Observations
indicate that Jupiter’s polar vortices approximately follow a circular shear flow profile with
b = 1.5 (Li et al. 2020). The maximum velocity is about 100 m/s achieved at a distance of
1000 km from the center of vortex (Grassi et al. 2018). Two scenarios have been proposed
for their formation: one suggests that these vortices originate in the shallow weather layer,
while the other posits formation within the deep convective zone. If the vortices form in
the shallow weather layer, the background atmosphere is convectively stable, which aligns
with the idealized conditions considered here in our analysis. The rotation rate of Jupiter
is about 10 hours, therefore the Rossby number is about 0.3. In Jupiter’s atmosphere, the
Brunt—Visili frequency N ranges from about 0.01 s~! near the 1-bar level (cloud top) to
0.005 s~! at 10 bars (about 100 km below cloud top) (Simon et al. 2018; Dowling et al.
1998, 2006). Below 100 km in depth, N could probably remains less than 0.005 s~!. Given
that Jupiter’s atmosphere extends at most only a few thousand kilometers (Kaspi et al. 2018;
Kong et al. 2018; Guillot et al. 2018), the Froude number Fr cannot fall below 107%. As
seen in the Fig. 1, Fr should be on the order of Fr ~ 0.1 for a vortex to remain stable when
Ro ~ 0.1. Assuming N = 0.005s~!, this implies a vertical scale height of approximately
H ~ 200km. For smaller N, the predicted depth would be even greater, suggesting that
Jupiter’s large-scale vortices could extend several hundred kilometers below the cloud tops.
In Saturn’s atmosphere, the polar vortex reaches a peak velocity of about 160 m/s at a
radius of roughly 1500 km, corresponding to a Rossby number near 0.3. The Brunt—Viasild
frequency in the cloud region is approximately 0.003 s~! (Garcia-Melendo et al. 2007; Genio
et al. 2009). Applying the same Froude number constraint as before suggests that the depth
of these large-scale polar vortices is on the order of 300km at Fr ~ 0.1. This indicates that
Saturn’s polar vortices also likely could extend several hundred kilometers below the cloud
tops.
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